翻訳と辞書
Words near each other
・ Liouville dynamical system
・ Liouville field theory
・ Liouville function
・ Liouville gravity
・ Liouville number
・ Liouville Point
・ Liouville surface
・ Liouville's equation
・ Liouville's formula
・ Liouville's theorem
・ Liouville's theorem (complex analysis)
・ Liouville's theorem (conformal mappings)
・ Liouville's theorem (differential algebra)
・ Liouville's theorem (Hamiltonian)
・ Liouville–Arnold theorem
Liouville–Neumann series
・ Liouvillian function
・ Lioux
・ Lioux-les-Monges
・ Liow Tiong Lai
・ Lioxanthodes
・ Liozna
・ Liozna Raion
・ Lip
・ LIP (company)
・ Lip (disambiguation)
・ Lip (gastropod)
・ Lip augmentation
・ Lip balm
・ Lip compression


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Liouville–Neumann series : ウィキペディア英語版
Liouville–Neumann series

In mathematics, the Liouville–Neumann series is an infinite series that corresponds to the resolvent formalism technique of solving the Fredholm integral equations in Fredholm theory.
==Definition==
The Liouville–Neumann series is defined as
:\phi\left(x\right) = \sum^\infty_ \lambda^n \phi_n \left(x\right)
which is a unique, continuous solution of a Fredholm integral equation of the second kind:
:f(t)= \phi(t) - \lambda \int_a^bK(t,s)\phi(s)\,ds.
If the ''n''th iterated kernel is defined as
:K_n\left(x,z\right) = \int\int\cdots\int K\left(x,y_1\right)K\left(y_1,y_2\right) \cdots K\left(y_, z\right) dy_1 dy_2 \cdots dy_
then
:\phi_n\left(x\right) = \int K_n\left(x,z\right)f\left(z\right)dz
with
:\phi_0\left(x\right) = f\left(x\right).
The resolvent or solving kernel is given by
:K\left(x, z;\lambda\right) = \sum^\infty_ \lambda^n K_ \left(x, z\right).

The solution of the integral equation becomes
:\phi\left(x\right) = \int K \left( x, z;\lambda\right) f\left(z\right)dz.
Similar methods may be used to solve the Volterra equations.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Liouville–Neumann series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.